Multi-Label Learning from Medical Plain Text with Convolutional Residual Models

نویسندگان

  • Xinyuan Zhang
  • Ricardo Henao
  • Zhe Gan
  • Yitong Li
  • Lawrence Carin
چکیده

Predicting diagnoses from Electronic Health Records (EHRs) is an important medical application of multi-label learning. We propose a convolutional residual model for multi-label classification from doctor notes in EHR data. A given patient may have multiple diagnoses, and therefore multi-label learning is required. We employ a Convolutional Neural Network (CNN) to encode plain text into a fixed-length sentence embedding vector. Since diagnoses are typically correlated, a deep residual network is employed on top of the CNN encoder, to capture label (diagnosis) dependencies and incorporate information directly from the encoded sentence vector. A real EHR dataset is considered, and we compare the proposed model with several well-known baselines, to predict diagnoses based on doctor notes. Experimental results demonstrate the superiority of the proposed convolutional residual model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large Scale Multi-label Text Classification with Semantic Word Vectors

Multi-label text classification has been applied to a multitude of tasks, including document indexing, tag suggestion, and sentiment classification. However, many of these methods disregard word order, opting to use bag-of-words models or TFIDF weighting to create document vectors. With the advent of powerful semantic embeddings, such as word2vec and GloVe, we explore how word embeddings and wo...

متن کامل

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

Text-Attentional Convolutional Neural Networks for Scene Text Detection

Recent deep learning models have demonstrated strong capabilities for classifying text and non-text components in natural images. They extract a high-level feature computed globally from a whole image component (patch), where the cluttered background information may dominate true text features in the deep representation. This leads to less discriminative power and poorer robustness. In this wor...

متن کامل

Efficient Method Based on Combination of Deep Learning Models for Sentiment Analysis of Text

People's opinions about a specific concept are considered as one of the most important textual data that are available on the web. However, finding and monitoring web pages containing these comments and extracting valuable information from them is very difficult. In this regard, developing automatic sentiment analysis systems that can extract opinions and express their intellectual process has ...

متن کامل

Deep learning for multi-label scene classification

Scene classification is an important topic in computer vision. For similar weather conditions, there are some obstacles for extracting features from outdoor images. In this thesis, I present a novel approach to classify cloudy and sunny weather images. Inspired by recent study of a deep convolutional neural network and the spatial pyramid matching, I generate a model based on the ImageNet datas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1801.05062  شماره 

صفحات  -

تاریخ انتشار 2018